УДК 504.064

DOI: 10.31774/2658-7890-2020-2-67-85

М. В. Власенко

Федеральный научный центр агроэкологии, комплексных мелиораций и защитного лесоразведения Российской академии наук, Волгоград, Российская Федерация

АНАЛИЗ ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ ВОДНЫХ РЕСУРСОВ ВОЛГО-АХТУБИНСКОЙ ПОЙМЫ

Цель: выявление негативного антропогенного воздействия на экологическое состояние водных ресурсов Волго-Ахтубинской поймы. Материалы и методы: работа основана на современных методах исследований с использованием данных государственной статистической отчетности, материалов отчетности водопользователей по форме 2-ТП (водхоз) водных объектов бассейна р. Волги Нижне-Волжского бассейнового водного управления. Результаты. Объем загрязненных сточных вод за 2010-2018 гг. составил: на участке КАС/ВОЛГА (ствол), Волга: верхняя граница 1128 км, нижняя граница 604 км – 1429771,68 тыс. м³; на участке КАС/ВОЛГА (ствол), Волга: верхняя граница 603 км, нижняя граница 542 км -960764,8 тыс. м³; на участке КАС/ВОЛГА (ствол), Волга: верхняя граница 541 км, нижняя граница 156 км – 1416,39 тыс. м³; на участке КАС/ВОЛГА 1 (ствол), Ахтуба: вп. Светлый Яр – вп. Верхнее Лебяжье – 16484,6 тыс. м³. Выводы: исследования позволили выделить водные участки, которые наиболее подвержены экологическому риску и нуждаются в регулярном мониторинге: КАС/ВОЛГА (ствол), верхняя граница – 1128 км, нижняя граница – 604 км, а также КАС/ВОЛГА (ствол), верхняя граница — 603 км, нижняя граница — 542 км. За период с 2010 по 2018 г. здесь отмечается сокращение объема сточных вод, имеющих загрязняющие вещества, в 1,4–1,8 раза.

Ключевые слова: водные участки; антропогенное воздействие; сточные воды; загрязняющие вещества; экологическое состояние.

M. V. Vlasenko

Federal Scientific Center for Agroecology, Complex Reclamation and Protective Afforestation of the Russian Academy of Sciences, Volgograd, Russian Federation

ANALYSIS OF ECOLOGICAL STATE OF THE VOLGO-AKHTUBA FLOODPLAIN WATER RESOURCES

Purpose: to identify negative anthropogenic impacts on the ecological state of water resources of the Volga-Akhtuba floodplain. **Materials and methods:** the work is based on modern research methods using data from the State statistical reporting, water users reporting in the form of 2-TP (vodkhoz) water bodies of the Volga river basin by Lower Volga Basin Water Administration. **Results.** The volume of polluted wastewater for 2010–2018 amounted to: on the KAS/VOLGA section (main), the Volga: the upper boundary of 1128 km, the lower boundary of 604 km – 1429771.68 thousand m³; on the KAS/VOLGA (main) section, the Volga: the upper boundary is 603 km, the lower boundary is 542 km – 960764.8 thousand m³; on the KAS/VOLGA (main) section, the Volga: the upper border is 541 km, the lower border is 156 km – 1416.39 thousand m³; on the KAS/VOLGA 1 (trunk) section Akhtuba: Svetly Yar – VP Upper Lebyazh'e – 16484.6 thousand m³. **Conclusions**: studies have identified water areas that are most exposed to environmental risk and need regular monitoring: CAS/VOLGA (trunk), upper boundary – 1128 km, lower boundary – 604 km, as well as

CAS/VOLGA (main), upper boundary -603 km, the lower border -542 km. A decrease in the volume of wastewater with pollutants by 1.4-1.8 times from 2010 to 2018 is noted.

Key words: water areas; anthropogenic impact; wastewater; pollutants; ecological state.

Введение. Проблемы экологической безопасности питьевого водоснабжения в регионах России в результате негативного воздействия на водные ресурсы являются ключевыми проблемами современности, так как длительное загрязнение ведет к возникновению санитарно-эпидемиологических ситуаций, деградации и потере хозяйственного значения ресурсов, ограничивает водопользование и делает его нерациональным. Главными источниками загрязнения являются промышленные предприятия, населенные пункты, свалки, из-за чего образуются загрязненные сточные воды больших объемов. Интенсивное загрязнение водных ресурсов – актуальная проблема экологической безопасности населения в стране, так как для стабильного существования населения необходимо сохранение благоприятных условий среды обитания.

Территория Волго-Ахтубинской поймы, где сформировалась сложная неустойчивая экологическая система, обладает значительным ресурсным, природным и рекреационным потенциалом, является орнитологической территорией международного уровня. Регион вовлечен в хозяйственную деятельность человека и испытывает усиливающееся локальное антропогенное воздействие, вместе с чем возрастает экологическая хрупкость территории [1, 2]. Основой поддержания экосистемы поймы является аккумулятивный запас воды в межень. Сохранению экологического равновесия поймы способствует изучение сложившихся экологических условий, а также прогнозы этих изменений. В последние годы население Волго-Ахтубинской поймы испытывает дефицит водных ресурсов (как поверхностных, так и подземных вод) для питьевого и хозяйственнобытового пользования. Безопасность и безвредность воды для всех сфер водопользования обеспечивает контроль ее качества, что также позволяет предупреждать развитие ряда заболеваний как у людей, так и у животных [3–10].

Цель работы заключается в выявлении негативного антропогенного воздействия на экологическое состояние водных ресурсов Волго-Ахтубинской поймы для решения ключевых проблем и поэтапного достижения целевого состояния речного бассейна в результате реализации программы водохозяйственных и водоохранных мероприятий.

Материалы и методы. Работа основана на современных методах исследований с использованием данных государственной статистической отчетности, материалов отчетности водопользователей по форме 2-ТП (водхоз) водных объектов бассейна р. Волги Нижне-Волжского бассейнового водного управления. Данные о фоновом загрязнении водных участков Волго-Ахтубинской поймы предоставлены Министерством природных ресурсов, лесного хозяйства и экологии Волгоградской области в рамках НИР 2019 г. «Разработка геоинформационной системы поддержки принятия решений по оптимизации мероприятий, направленных на охрану водных объектов от диффузных загрязнений, на основе имеющихся данных мониторинга, расчетных данных о величине диффузного загрязнения, оценок эффективности альтернативных стратегий водоохраны при различных сценариях антропогенной нагрузки на пилотные водные объекты и их водосборы Волги». Были рассмотрены водохозяйственные участки:

- 1) КАС/ВОЛГА (ствол), Волга: верхняя граница 1128 км, нижняя граница 604 км;
- 2) КАС/ВОЛГА (ствол), Волга: верхняя граница 603 км, нижняя граница 542 км;
- 3) КАС/ВОЛГА (ствол), Волга: верхняя граница 541 км, нижняя граница 156 км;
- 4) КАС/ВОЛГА 8 (ствол), Старая Волга, ВХУ: Волга (дельта) от вп. Верхнее Лебяжье до устья;
- 5) КАС/ВОЛГА 1 (ствол), Ахтуба: вп. Светлый Яр вп. Верхнее Лебяжье.

Результаты и обсуждения. Состав и свойства сточных вод должны соответствовать требованиям, предъявляемым к воде водных объектов хозяйственно-бытового, питьевого и рекреационного водопользования. Содержание химических веществ в воде не должно превышать предельно допустимые уровни, утвержденные в установленном порядке [11, 12]. Данные о фоновом загрязнении водных участков Волго-Ахтубинской поймы представлены в динамике (2010–2018 гг.) (таблицы 1–5, рисунок 1).

КАС/ВОЛГА (ствол), Волга: верхняя граница 1128 км, нижняя гранииа 604 км. В результате хозяйственной деятельности на этом участке основные водотоки загрязнены сточными водами. С 2010 по 2018 г. их объем сократился в 1,4 раза и в 2018 г. составил 145781,46 тыс. м³. Общий объем сточных вод в 2010–2018 гг. составил 1429771,68 тыс. м^3 . Из них азот аммонийный -1746,281 т, алюминий -608,776 кг, БПК полный -9071,3 т, взвешенные вещества – 3550,622 т, все растворимые в воде формы железа – 108260,440 кг, кальций – 120195,762 кг, кадмий – 6,494 кг, все растворимые в воде формы магния -36174,360 кг, бериллий -3,140 кг, фенол -199,128 кг, фосфаты (по P) -1664,258 т, хлориды -55630,073 т, хром $Cr^{3+} - 7,579$ кг, хром Cr^{6+} – 723,167 кг, цинк – 6128,869 кг, цианиды – 197,791 кг [13, 14]. Установлено значительное поступление в воду хлоридов. Хлориды, поступая в воду с промышленными и хозяйственно-бытовыми стоками, негативно влияют на здоровье человека и сельскохозяйственных животных, на рост и развитие выращиваемых растений, агрессивно воздействуют на металлические поверхности, увеличивают интенсивность их коррозии [15–17]. Отмечено также существенное наличие фосфатов. Их избыток может привести к ускоренной эвтрофикации водоема, вследствие чего возможно изменение видового состава и сообществ гидробионтов. Эвтрофирование относят к опасным явлениям на планете, сокращающим ресурсы пресной воды и ухудшающим их качество [18, 19].

Таблица 1 – Наличие загрязняющих веществ в воде участка КАС/ВОЛГА (ствол), верхняя граница 541 км, нижняя граница 156 км, 2010–2018 гг.

Год	Аммо- нийный азот, т	Fe ²⁺ , Fe ³⁺ , кг	БПК полный, т	ОП-10, СПАВ*, кг	Взвешен- ные ве- щества, т	Нефть и нефтепро- дукты, т	Сухой остаток, т	Фосфаты (по Р), т	Al ³⁺ , кг	Сl ⁻ , т	SO ₄ , T	NO ²⁻ , кг	NO ³⁻ , кг
2010	0,060	11,900	0,170	12,200	0,720	0,010	39,660	0,090	6,630	5,270	3,390	25,100	2573,100
2011	_	_	_	_	_	0,960	18,260	_	_	2,050	1,040	_	_
2012	_	_	_	_	_	0,088	_	_	_	_	_	_	_
2013	_	_	_	_	_	_	_	_	_	_	_	_	_
2014	_	_	_	-	_	_	_	_	_	_	_	_	_
2015	_	ı	_	_	_	_		_	_	_	_	_	_
2016	_	ĺ	_	_	_	_		_		_			_
2017	0,326	28,020	0,200	_	10,468	_	185,120	0,356		_	32,846	2,052	0,088
2018	0,600	77,320	2,600	_	6,000		468,000	0,100	_	_	_	1,400	0,040

Примечание $-*-O\Pi-10$, СПАВ, смесь моно- и диалкилфеноловых эфиров полиэтиленгликоля, кг.

S

Таблица 2 – Наличие загрязняющих веществ в воде Волго-Ахтубинской поймы участка КАС/ВОЛГА (ствол), верхняя граница 1128 км, нижняя граница 604 км, 2010–2018 гг.

Год	Аммоний- ный азот, т	Fe ²⁺ , Fe ³⁺ , кг	БПК полный, т	SO ₄ , T	Взвешенные вещества, т	Нефть и нефтепро- дукты, т	Cd, кг	Ca ²⁺ , кг	Мg, кг
1	2	3	4	5	6	7	8	9	10
2010	235,09	10623,56	1035,890	17032,830	550,690	4,110	0,100	16315,22	4149,83
2011	178,63	20805,78	1203,210	16375,834	916,872	5,589	0,060	12227,4	3260,85
2012	267,83	21967,18	1412,305	15762,577	618,984	2,568	0,060	29491,22	10923,02
2013	182,02	9003,88	638,077	10259,779	206,260	1,726	0,570	10772,7	3330,20
2014	205,08	6885,67	903,673	12998,272	215,515	1,309	5,174	12516,9	4125,81
2015	147,62	6371,76	902,162	14269,083	116,375	1,545	0,530	11563,6	3443,52
2016	234,29	5076,68	954,941	12428,462	217,494	1,485	_	14248,4	3265,30
2017	164,74	8114,52	962,163	12632,123	382,778	1,775	_	5546,9	1743,61
2018	130,98	19411,4	1058,904	14059,344	325,654	1,797	_	7513,3	1932,21

Год	ОП-10, СПАВ*, кг	Ni ²⁺ , кг	Роданиды (по SCN), кг	NO ²⁻ , кг	NO ³⁻ , кг	Al ³⁺ , кг	Cu ²⁺ , кг	Рь, кг	S ²⁻ , кг
1	11	12	13	14	15	16	17	18	19
2010	2547,850	135,830	398,29	24265,360	2187902,7	197,520	175,590	6,470	_
2011	3961,932	127,400	339,70	25471,577	3360210,5	43,970	23,767	5,520	_
2012	5006,792	87,477	253,30	24892,063	3366440,0	121,257	21,587	11,11	_
2013	4891,089	85,176	108,94	22632,142	2755314,1	25,810	9,760	1,014	_
2014	7790,353	67,932	150,24	25908,692	5084620,8	7,066	17,413	0,464	_
2015	5763,439	130,064	269,74	26114,576	5082197,7	17,496	26,261	0,114	_
2016	6998,851	139,509	244,43	27078,801	4933898,6	14,923	21,888	0,073	47,413
2017	6009,217	116,508	303,99	25058,576	5118115,0	146,427	31,727	_	49,090
2018	7179,924	440,019	93,80	25825,459	5191279,6	34,307	30,667	_	2,306
Γ		$-O\Pi$ -10, $C\Pi$	АВ, смесь моно	о- и диалкилф	еноловых эфир	ов полиэтиленг	ликоля, кг.		

Таблица 3 – Наличие загрязняющих веществ в воде участка Волго-Ахтубинской поймы КАС/ВОЛГА (ствол), верхняя граница 603 км, нижняя граница 542 км, 2010–2018 гг.

Год	Аммо- нийный азот, т	Сухой остаток, т	БПК полный, т	ОП-10, СПАВ*, кг	Взвешен- ные веще- ства, т	Fe ²⁺ , Fe ³⁺ , кг	Нефть и неф- тепродукты, т	Алкилсуль- фонат на- трия, кг	Al ³⁺ , кг	Фосфаты по Р, т
1	2	3	4	5	6	7	8	9	10	11
2010	73,270	27537,800	1099,010	5980,070	2398,680	11396,280	3,970	_	1275,370	225,010
2011	65,014	26210,503	720,948	4698,969	2045,917	2122,587	2,605	_	1491,109	201,042
2012	167,017	_	758,103	2424,498	1939,078	1787,908	3,198	_	915,473	182,227
2013	164,637	21928,919	577,039	2209,720	1807,439	4244,228	2,678	_	1052,881	148,167
2014	128,300	25094,639	745,923	3001,147	1813,308	17762,117	2,673	59,655	1124,842	130,416
2015	143,953	20704,552	905,438	3371,379	1538,218	16361,293	3,155	_	1226,954	109,102
2016	152,099	14661,689	1273,814	4481,431	1651,079	15633,346	4,018	_	1892,99	132,164
2017	65,361	15722,709	620,899	2801,951	1206,796	13841,726	2,862	_	1739,420	30,053
2018	92,900	15311,843	553,577	2831,594	1147,932	13407,355	2,852	_	1929,325	18,689

Год	NO ²⁻ , кг	Ca ²⁺ , кг	Mg, кг	SO ₄ , T	Cu ²⁺ , кг	Cl⁻, т	Ni ²⁺ , кг	NO ³⁻ , кг	ХПК, кг	F ⁻ , кг
1	12	13	14	15	16	17	18	19	20	21
2010	29684,820	19444,590	6584,350	5842,120	215,510	47786,170	246,580	7040756,18	6154,550	3177,080
2011	15129,783	19077,406	6802,689	6234,905	11,925	6310,860	579,826	7004137,65	7591,601	8410,958
2012	52971,299	19567,603	6467,435	5806,175	8,059	6272,685	556,764	6020678,22	12616,126	24727,660
2013	60455,361	12976,151	8772,700	5242,928	11,621	5830,429	0	5427097,89	6589,155	11692,051
2014	61070,474	11416,786	16658,690	5373,630	8,278	5492,414	0,494	4367501,40	7148,528	11957,694
2015	48117,251	8074,543	1376,508	4921,316	167,288	4765,374	0,001	3409886,54	5759,406	4832,193
2016	25105,524	9202,246	1568,621	1469,677	146,594	3784,874	0,002	2851835,93	9914,393	2942,920
2017	6908,209	7856,530	1348,400	1838,809	23,566	3493,710	0	4312756,25	_	1326,220
2018	5104,964	3853,128	848,906	1931,946	0,468	3895,867	0	3417687,64	_	1628,166

Год	Фосфаты по Р, т	Cr ⁶⁺ , кг	Cr ³⁺ , кг	Фенол, кг	S ²⁻ , кг	Cd, кг	Mn ²⁺ , кг	Zn ²⁺ , кг	H ₂ S, кг	Na ⁺ , кг
1	22	23	24	25	26	27	28	29	30	31
2010	225,010	_	_	_	215,970	_	2114,450	1861,800	0,290	_
2011	201,042	_	_	_	237,466	_	146,880	1613,839	_	_
2012	182,227	423,141	_	_	270,671	_	477,130	39,998	_	_
2013	148,167	1166,568	_	_	0	_	246,940	36,629	_	_
2014	130,416	1417,208	_	0,159	0	0,278	4199,273	63,648	_	_
2015	109,102	944,152	_	0,056	0	_	4355,380	164,741	_	2780,000
2016	132,164	_	_	_	0	_	4151,277	79,625	_	_
2017	30,053	_	957,826	_	0	_	2505,083	16,261	_	_
2018	18,689	_	920,268	_	0	_	2194,485	4,085	_	_
	Примечание	$-*-O\Pi-10$	СПАВ, сме	сь моно- и ,	диалкилфено	ловых эфиро	в полиэтиленгли	коля, кг.		

Таблица 4 – Наличие загрязняющих веществ в воде Волго-Ахтубинской поймы на участке КАС/ВОЛГА1 (ствол), Ахтуба: вп. Светлый Яр – вп. Верхнее Лебяжье, 2010–2018 гг.

Год	Аммонийный азот, т	Cu ²⁺ , кг	Fe ²⁺ , Fe ³⁺ , кг	БПК полный, т	ОП-10, СПАВ*, кг	Zn ²⁺ , кг	Cl⁻, т	Al ³⁺ , кг
1	2	3	4	5	6	7	8	9
2010	_	_	-		0,640			1,270
2011	_	_	_	0,057	0,563		1	_
2012	3,190	4,250	329,700	10,721	65,212	36,590	82,160	38,340
2013	2,497	11,220	241,970	10,330	261,750	81,290	75,850	17,050
2014	3,456	17,110	15,937	10,720	171,070	102,640	67,600	0,020
2015	2,950	_	1,430	9,730	0,040	0,030	76,810	0,020
2016	1,380	_	0,170	5,680	0,750	0,005	85,420	0,012
2017	0,552	0,017	1,957	10,310	0,060	0,075	61,130	0,016
2018	0,858	44,398	88,172	5,867	3,494	56,273	73,080	29,000

Год	SO ₄ , T	Фосфаты (по Р), т	Взвешенные вещества, т	Нефть и нефтепродукты, т	NO ³⁻ , кг	NO ²⁻ , кг	Сухой остаток, т
1	10	11	12	13	14	15	16
2010	0,750	_	_	-	_	_	_
2011	_	0,003	0,093	ŀ	18,572	_	_
2012	163,040	_	12,953	0,060	19296,464	129,390	622,424
2013	92,990	ı	9,432	0,590	2396,900	35,890	436,890
2014	90,530		9,890	ľ	2230,867	37,571	437,040
2015	80,290		9,420	ľ	1,650	0,432	410,682
2016	111,090	0,003	6,816	0,001	1,250	0,016	431,992
2017	75,830	_	10,960	0,003	2,076	0,080	424,550
2018	75,516	0,001	8,695	0,057	1550,129	46,816	396,630
	Примечание	$e - * - O\Pi-10$, СПАВ, см	иесь моно- и диал	килфеноловых эфиров полиэтилен	нгликоля, кг.		

Таблица 5 — Наличие загрязняющих веществ в воде участка КАС/ВОЛГА 8 (ствол), Старая Волга, 2010–2018 гг.

Год	Аммо- ний- ный азот, т	Сухой остаток, т	СГ⁻, т	БПК полный, т	SO ₄ , T	NO ²⁻ , кг	NO ³⁻ , кг	Взве- шенные вещест- ва, т	Фосфа- ты (по Р), т
2010	_		_	_				_	_
2011	_	ı	_	_		ı	ĺ	_	_
2012	_		_	_				_	_
2013	0,330	1945,01	476,865	5,038	184,37	0,06		_	0,946
2014	_		_	_				_	_
2015	_		_	_				_	_
2016	_		6,660	0,226	168,14	43,70	_	_	_
2017	_	_	0,610	_	5,670			_	_
2018	1,490	60,07	11,980	0,870	511,58	19,0	480,0	1,340	_

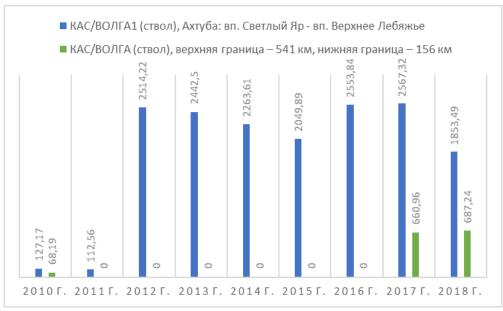


Рисунок 1 — Объем сточных вод (тыс. м³), имеющих загрязняющие вещества, в воде участков Волго-Ахтубинской поймы, 2010—2018 гг.

Основной объем сточных вод на этом участке в 2010 г. – это сточные воды ООО «Концессия водоснабжения – Саратов» (ООО «КВС») (110233,58 тыс. м³), в 2012 г. – МУП «Энгельс-Водоканал» (16520,30 тыс. м³), в 2013 г. – ООО «КВС» (86847,50 тыс. м³), в 2014 г. – ООО «КВС» (81987,11 тыс. м³), в 2015 г. – МУП «Энгельс-Водоканал» (23184,15 тыс. м³), в 2016 г. – МУП «Энгельс-Водоканал» (23706,51 тыс. м³), в 2017 г. – ООО «КВС» (89621,71 тыс. м³), в 2018 г. – ООО «КВС» (86097,24 тыс. м³) [13, 14]. С 2010 по 2018 г. отмечается положительная динамика снижения объема сточных вод, имеющих загрязняющие вещества. В 2010 г. их объем составил 206426,13 тыс. м³, в 2011 г. – 163274,23 тыс. м³, в 2012 г. – 159882,63 тыс. м³, в 2013 г. – 150718,07 тыс. м³, в 2014 г. – 145936,76 тыс. м³, в 2015 г. – 152558,98 тыс. м³, в 2016 г. – 154199,02 тыс. м³, в 2017 г. – 150994,4 тыс. м³, в 2018 г. – 145781,46 тыс. м³ [13, 14].

КАС/ВОЛГА (ствол), Волга: верхняя граница 603 км, нижняя граница 542 км. Несмотря на то, что с 2010 по 2018 г. объем сточных вод, имеющих загрязняющие вещества, сократился почти в 1,8 раза и в 2018 г. составил 77617,83 тыс. м^3 , общий объем сточных вод в 2010–2018 гг. был значительным и достиг 960764,8 тыс. M^3 . Из них азот аммонийный – 1052,551 т, азот общий – 0,030 т, алкилсульфонат натрия (в техническом препарате) – 59,655 кг, алюминий – 12648,367 кг, БПК полный – 7254,751 т, взвешенные вещества – 15548,447 т, все растворимые в воде формы железа – 96556,840 кг, кальций – 111468,983 кг, кадмий – 0,278 кг, все растворимые в воде формы магния – 50428,299 кг, марганец – 20390,898 кг, медь – 593,309 кг, натрий -2780,000 кг, нефть и нефтепродукты -28,011 т, никель -1383,667 кг, 43852337,713 кг, нитрат-анионы нитрит-анионы 304547,685 кг, ОП-10, СПАВ, смесь моно- и диалкилфеноловых эфиров полиэтиленгликоля -31800,759 кг, сульфат-анионы (сульфаты) -38661,506 т, сульфид-анионы (сульфиды) -724,107 кг, сухой остаток -191900,314 т, сероводород – 0,290 кг, фенол – 0,215 кг, фосфаты – 1176,870 т, фтор –

61238,722 кг. Сточные воды содержат большие объемы сульфатов, фосфатов, нефти и нефтепродуктов. Основной объем сточных вод в 2010–2016 гг. поступал от предприятия МУП «Горводоканал г. Волгограда»: в 2010 г. – 105662,69 тыс. м³, в 2012 г. – 128964,72 тыс. м³, в 2013 г. – 122116,85 тыс. м³, в 2014 г. – 118204,98 тыс. м³, в 2015 г. – 100545,36 тыс. м³, в 2016 г. – 62538,57 тыс. м³ [13, 14]. В 2017–2018 гг. большой объем сточных вод был получен от ООО «Концессии водоснабжения»: в 2017 г. – 87751,70 тыс. м³, в 2018 г. – 77543,56 тыс. м³ [13, 14].

КАС/ВОЛГА (ствол), Волга: верхняя граница 541 км, нижняя граница 156 км. Общий объем сточных вод, имеющих загрязняющие вещества, в 2010–2018 гг. составил 1416,39 тыс. м³. С 2010 по 2018 г. этот показатель вырос в 10 раз и в 2018 г. составил 687,24 тыс. M^3 . Из них азот аммонийный – 0,986 т, алюминий -6,630 кг, БПК полный -2,970 т, взвешенные вещества -17,188 т, все растворимые в воде формы железа -117,240 кг, нефть и нефтепродукты – 1,058 т, нитрат-анионы – 2573,228 кг, нитрит-анионы – 28,552 кг, ОП-10, СПАВ, смесь моно- и диалкилфеноловых эфиров полиэтиленгликоля – 12,200 кг, сульфат-анионы (сульфаты) – 37,276 т, сухой остаток -711,040 т, фосфаты (по P) -0.546 т, хлориды -7.320 т [13, 14]. В 2010 г. объем сточных вод, имеющих загрязняющие вещества, составил 68,19 тыс. м³ за счет сбросов ООО «Новомосковская коммунальная энергетика» (ООО «Новкомэнерго»). Из этого количества азот аммонийный составил 0,060 т, БПК полный -0,170 т, взвешенные вещества -0,720 т, все растворимые в воде формы железа – 11,900 кг, нефть и нефтепродукты – 0,010 т, нитрат-анионы -2573,100 кг, нитрит-анионы -25,100 кг, ОП-10, СПАВ, смесь моно- и диалкилфеноловых эфиров полиэтиленгликоля – 12,200 кг, сульфат-анионы (сульфаты) — 3,390 т, сухой остаток — 39,660 т, фосфаты (по P) -0.090 т [13, 14]. С 2011 по 2016 г. сточных вод, имеющих загрязняющие вещества, не отмечалось. В 2017 г. их объем достиг 660,96 тыс. м^3 за счет сбросов ООО «Агропромышленный комплекс «Астраханский» (ООО «АПК «Астраханский»), из этого количества азот аммонийный составил 0,326 т, БПК полный -0,200 т, взвешенные вещества -10,468 т, все растворимые в воде формы железа -28,020 кг, нефть и нефтепродукты -0,088 т, нитрат-анионы -0,088 кг, нитрит-анионы -2,052 кг, сульфат-анионы (сульфаты) -32,846 т, сухой остаток -185,120 т, фосфаты (по P) -0,356 т [13, 14]. В 2018 г. объем сточных вод, имеющих загрязняющие вещества, составил 687,24 тыс. м³ также за счет сброса вод ООО «АПК «Астраханский», из этого количества азот аммонийный составил 0,600 т, БПК полный -2,600 т, взвешенные вещества -6,000 т, растворимые в воде формы железа -77,320 кг, нитрат-анионы -0,040 кг, нитрит-анионы -1,400 кг, сухой остаток -468,000 т, фосфаты (по P) -0,100 т [14].

КАС/ВОЛГА 8 (ствол), Старая Волга, ВХУ: 11.01.00.025 — Волга (дельта) от вп. Верхнее Лебяжье до устья. На участке Старой Волги выявленные объемы сточных вод, имеющих загрязняющие вещества, за период 2010-2018 гг. в своем составе содержат азот аммонийный -1,820 т, БПК полный – 6,134 т, взвешенные вещества – 1,340 т, нитрат-анионы – 480,000 кг, нитрит-анионы – 62,760 кг, сульфат-анионы (сульфаты) – 869,758 т, сухой остаток – 2005,080 т, фосфаты (по P) – 0,946 т, хлориды – 496,115 т [13, 14]. Основными загрязнителями вод на этом участке являются: в 2013 г. – ФГБУ «Севкаспрыбвод», в составе сточных вод были выявлены следующие загрязняющие вещества: БПК полный -5,038 т, азот аммонийный -0.330 т, нитрит-анионы -0.060 кг, сульфат-анионы (сульфаты) -184,368 т, сухой остаток – 1945,010 т, фосфаты – 0,946 т, хлориды – 476,865 т; в 2016 г. – ФГБУ «Севкаспрыбвод», в составе сточных вод были выявлены: БПК полный -0.226 т, нитрит-анионы -43.700 кг, сульфатанионы (сульфаты) – 79,340 т; в 2017 г. – ООО «ПКФ «Рыбопитомник Чаганский», в составе сточных вод выявлены: сульфат-анионы (сульфаты) – 5,670 т, хлориды -0,610 т; в 2018 г. $-\Phi \Gamma Б У$ «Главрыбвод», ОСП Икрянинское HBX, состав сточных вод включал: БПК полный -0.500 т, взвешенные вещества -1,030 т, нитрат-анионы -480,000 кг, нитрит-анионы -19,000 кг, сульфат-анионы (сульфаты) -508,100 т, хлориды -10,040 т, сухой остаток -41,420 т [13, 14]. В 2010-2012 и 2014-2015 гг. на участке Старой Волги сточных вод, имеющих загрязняющие вещества, не выявлено.

KAC/BOЛГА 1 (ствол), Ахтуба: вп. Светлый Яр - вп. Верхнее Лебяжье.В результате хозяйственной деятельности водные ресурсы загрязнены сточными водами. Объем загрязняющих веществ в 2010–2018 гг. в них составил 16484,6 тыс. м³, в т. ч. БПК полный -63,415 т, алюминий -85,728 кг, азот аммонийный -14,883 т, взвешенные вещества -68,259 т, все растворимые в воде формы железа -679,336 кг, медь -76,995 кг, нефть и нефтепродукты -0,711 т, $NO_3^- - 25497,908$ кг, $NO_2^- - 250,195$ кг, ОП-10, СПАВ, смесь моно- и диалкилфеноловых эфиров полиэтиленгликоля -503,579 кг, сульфаты -690,036 т, сухой остаток -3160,208 т, хлориды -522,050 т, фосфаты -0,007 т, цинк -276,903 кг. Объем сточных вод на участке с 2010 до 2018 г. вырос в 14,6 раза и в 2018 г. составил 1853,49 тыс. м³. Основным загрязнителем вод в 2010–2011 гг. являлось предприятие поселения Средняя Ахтуба Волгоградской области МУП «Среднеахтубинское ЖКХ». В 2012 г. и с 2014 по 2018 г. основной объем сточных вод поступал с муниципального предприятия «Теплосети» (МП «Теплосети»). Так, в 2012 г. объем сточных вод составил 2409,78 тыс. M^3 , в 2014 г. -2163,47 тыс. M^3 , в 2015 г. -1915,88 тыс. M^3 , в 2016 г. – 2413,94 тыс. M^3 , в 2017 г. – 2425,22 тыс. M^3 , в 2018 г. – 1713,74 тыс. м³. Основными загрязняющими воду веществами сточных вод МП «Теплосети» были сульфаты (SO₄): в 2012 г. – 162,710 т, в 2014 г. – 90,530 т, в 2015 г. - 80,290 т, в 2016 г. - 111,090 т, в 2017 г. - 75,830 т, в 2018 г. – 44,906 т. Увеличенное содержание в воде сульфатов повышает риски возникновения болезни почек и сердца [6]. В сточных водах МП «Теплосети» выявлено значительное количество хлоридов (Cl $^-$): в 2012 г. – 82,160 т, в 2013 г. – 75,850 т, в 2014 г. -67,600 т, в 2015 г. -76,810 т, в 2016 г. -85,420 т, в 2017 г. -61,130 т, в 2018 г. – 52,959 т [13, 14].

Все предприятия и организации, загрязняющие водные ресурсы поймы, обязаны проводить водоочистные мероприятия и иметь в наличии лицензированные локальные системы очистки сточных вод. Этот процесс проследим на примере канализации городскими сетями стоков ООО «КВС». Канализационные насосные станции перекачивают стоки в самотечные коллекторы, через которые они поступают на очистные сооружения городской станции аэрации для прохождения полного цикла биологической очистки. Стоки проходят первичную механическую очистку, осаждение песка, осаждение взвешенных веществ, биологическую очистку от органических примесей активным илом. Во вторичных радиальных отстойниках, куда поступает вода с избыточным активным илом, ил осаждается. Вода обеззараживается хлорной водой и подается в распределительный водовыпуск по дну р. Волги. Смесь осадка и избыточного активного ила в отстойниках перекачивается в резервуары-смесители и передается в цех механического обезвоживания, где смешивается с флокулянтом и подается на пресс-фильтры для обезвоживания. Обезвоженный осадок отгружается автотранспортом на полигон для утилизации.

При проведении водоочистных мероприятий на некоторых предприятиях периодически выявляются нарушения. Так, в ходе проверки очистных сооружений МУП «Энгельс-Водоканал» природоохранной прокуратурой в 2018 г. было установлено, что предприятие эксплуатирует объекты обезвреживания отходов без соответствующей лицензии, что образует состав административного правонарушения по ч. 2 ст. 14.1 КоАП РФ [20].

Заключение. Объем сточных вод, имеющих загрязняющие вещества, за 2010–2018 гг. составил: на участке КАС/ВОЛГА (ствол), Волга: верхняя граница 1128 км, нижняя граница 604 км — 1429771,68 тыс. м³, на участке КАС/ВОЛГА (ствол), Волга: верхняя граница 603 км, нижняя граница 542 км — 960764,8 тыс. м³, на участке КАС/ВОЛГА (ствол), Волга: верхняя граница 541 км, нижняя граница 156 км — 1416,39 тыс. м³, на участке КАС/ВОЛГА 1 (ствол), Ахтуба: вп. Светлый Яр — вп. Верхнее Лебя-

жье — 16484,6 тыс. м³. Наибольшие объемы загрязняющих веществ в воде Волго-Ахтубинской поймы выявлены на участках: КАС/ВОЛГА (ствол), верхняя граница — 1128 км, нижняя граница — 604 км и КАС/ВОЛГА (ствол), верхняя граница — 603 км, нижняя граница — 542 км.

Список использованных источников

- 1 Водно-экологические проблемы Волго-Ахтубинской поймы / М. В. Болгов, К. Ю. Шаталова, О. В. Горелиц, И. В. Землянов // Экосистемы: экология и динамика. 2017. T. 1, № 3. C. 15–37.
- 2 Алексеева, Т. А. Экологическое состояние водоемов Волго-Ахтубинской поймы / Т. А. Алексеева // Вестник Астраханского государственного технического университета. -2007. -№ 4(39). C. 121-124.
- З Экологическая безопасность в природообустройстве, водопользовании и строительстве: оценка экологического состояния бассейновых геосистем / В. Л. Бондаренко, Г. М. Скибин, В. Н. Азаров, Е. А. Семенова, В. В. Приваленко. Новочеркасск: ЮРГПУ (НПИ) им. М. И. Платова, 2016. 419 с.
- 4 Демиденко, Г. А. Экологический мониторинг состояния питьевой воды / Г. А. Демиденко, Е. В. Котенева // Вестник Красноярского государственного аграрного университета. -2014. -№ 5(92). C. 128–132.
- 5 Дубровская, О. Г. Деконтаминация сточных вод медицинских комплексов как основа экологической безопасности водопользования / О. Г. Дубровская, И. В. Андруняк // В мире научных открытий. -2015. -№ 11-3(71). C. 1279–1288.
- 6 Коновалова, О. Е. Анализ химических показателей качества воды и их влияния на здоровье человека / О. Е. Коновалова, А. В. Коновалов, Т. В. Истомина // XXI век: итоги прошлого и проблемы настоящего плюс. − 2016. − № 1(29). − С. 120−125.
- 7 Кулик, А. К. Экология среды: ресурсы, чистота и качество природных вод Придонских песчаных массивов / А. К. Кулик, М. В. Власенко, В. И. Петров // Известия Нижневолжского агроуниверситетского комплекса: наука и высшее профессиональное образование. 2017. № 4(48). С. 105–113.
- 8 Экологические аспекты качества питьевой воды / В. А. Никифорова, Е. А. Видищева, А. А. Ковчун, Д. Д. Видищева // Труды Братского государственного университета. Серия: Естественные и инженерные науки. 2017. Т. 2. С. 166–169.
- 9 Пономаренко, Р. В. Повышение уровня экологической безопасности питьевого водоснабжения региона в условиях загрязнения поверхностного источника / Р. В. Пономаренко // Экологическая безопасность. -2013. -№ 1(15). C. 24–27.
- 10 Степанов, Н. А. Характеристика влияния качественного состава питьевой воды на здоровье человека / Н. А. Степанов, Е. И. Заводова // Гигиена труда и медицинская экология. -2015. -№ 3. C. 200–205.
- 11 Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования: Гигиенические нормативы ГН 2.1.5.1315-03: утв. Гл. гос. санитар. врачом Рос. Федерации 30.04.03: введ. в действие с 15.06.03. М., 2003. 74 с.
- 12 Расчет предельно допустимой концентрации вредных веществ в сбрасываемых сточных водах / К. А. Шурыгин, К. В. Махов, Е. А. Руденко, Р. И. Талянин // Colloquium-journal. 2018. № 10-2(21). С. 106–107.
- 13 Доклад «О состоянии окружающей среды Волгоградской области в 2017 году» / редкол.: В. Е. Сазонов [и др.]; Ком. природ. ресурсов, лес. хоз-ва и экологии Волгогр. обл. Волгоград: Темпора, 2018. 300 с.

- 14 Доклад «О состоянии окружающей среды Волгоградской области в 2018 году» / редкол.: В. Е. Сазонов [и др.]; Ком. природ. ресурсов, лес. хоз-ва и экологии Волгогр. обл. Волгоград: Темпора, 2019. 300 с.
- 15 Куркина, Л. В. Влияние пестицидов на окружающую среду и здоровье население Кемеровской области / Л. В. Куркина, С. И. Рудакова // Вестник Российской академии естественных наук. Западно-Сибирское отделение. 2015. № 17. С. 153—158.
- 16 Соколов, О. А. Экологическая безопасность и устойчивое развитие / О. А. Соколов, В. А. Черников // Атлас распределения тяжелых металлов в объектах окружающей среды. Пущино: ОНТИ ПНЦ РАН, 1999. Кн. 1. 164 с.
- 17 Тафеева, Е. А. Эколого-гигиеническая оценка влияния загрязнения почвы на здоровье населения / Е. А. Тафеева, И. В. Петров // Современные проблемы науки и образования. $-2016.- \mathbb{N} 2.- \mathbb{N} 2.- \mathbb{N} 2.- \mathbb{N} 2.$
- 18 Алимов, А. Ф. Эвтрофирование водоемов и структура сообщества гидробионтов / А. Ф. Алимов, М. С. Голубков // Биология внутренних вод. -2014. -№ 3. -ℂ. 5-11.
- 19 Хрисанов, Н. И. Управление эвтрофированием водоемов / Н. И. Хрисанов, Г. К. Осипов. СПб.: Гидрометеоиздат, 1993. 274 с.
- 20 Решение Арбитражного суда Саратовской области по заявлению Саратовской межрайонной природоохранной прокуратуры о привлечении МУП «Энгельс-Водоканал» к административной ответственности по ч. 2 ст. 14.1 КоАП РФ (Дело № А57-20708/2018 18 февраля 2019) [Электронный ресурс]. Режим доступа: https://doc/tqgczeaWveR, 2020.

References

- 1 Bolgov M.V., Shatalova K.Yu., Gorelits O.V., Zemlyanov I.V., 2017. *Vodno-ekologicheskie problemy Volgo-Akhtubinskoy poymy* [Water-ecological problems of the Volga-Akhtuba floodplain]. *Ekosistemy: ekologiya i dinamika* [Ecosystems: Ecology and Dynamics], vol. 1, no. 3, pp. 15-37. (In Russian).
- 2 Alekseeva T.A., 2007. *Ekologicheskoe sostoyanie vodoemov Volgo-Akhtubinskoy poymy* [Ecological state of reservoirs of the Volga-Akhtuba floodplain]. *Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta* [Bull. of Astrakhan State Technical University], no. 4 (39), pp. 121-124. (In Russian).
- 3 Bondarenko V.L., Skibin G.M., Azarov V.N., Semenova E.A., Privalenko V.V., 2016. *Ekologicheskaya bezopasnost' v prirodoobustroystve, vodopol'zovanii i stroitel'stve: otsenka ekologicheskogo sostoyaniya basseynovykh geosistem* [Environmental Security in the Environmental Engineering, Water Management and Construction: Assessment of the Ecological State of Basin Geosystems]. Novocherkassk, SRSPU (NPI) named after M.I. Platov, 419 p. (In Russian).
- 4 Demidenko G.A., Koteneva E.V., 2014. *Ekologicheskiy monitoring sostoyaniya pit'evoy vody* [Ecological monitoring of the state of drinking water]. *Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta* [Bull. of Krasnoyarsk State Agrarian University], no. 5(92), pp. 128-132. (In Russian).
- 5 Dubrovskaya O.G., Andrunyak I.V., 2015. *Dekontaminatsiya stochnykh vod meditsinskikh kompleksov kak osnova ekologicheskoy bezopasnosti vodopol'zovaniya* [Decontamination of wastewater of medical complexes as the basis of environmental safety of water use]. *V mire nauchnykh otkrytiy* [In the World of Scientific Discoveries], no. 11-3(71), pp. 1279-1288. (In Russian).
- 6 Konovalova O.E., Konovalov A.V., Istomina T.V., 2016. *Analiz khimicheskikh pokazateley kachestva vody i ikh vliyaniya na zdorov'e cheloveka* [Analysis of chemical indicators of water quality and their impact on health of the person]. *XXI vek: itogi proshlogo i problemy nastoyashchego plyus* [21st Century: Results of the Past and Problems of the Present Plus], no. 1(29), pp. 120-125. (In Russian).

- 7 Kulik A.K., Vlasenko M.V., Petrov V.I., 2017. *Ekologiya sredy: resursy, chistota i kachestvo prirodnykh vod Pridonskikh peschanykh massivov* [Ecology of the environment: resources, purity and quality of natural waters of the Pridonsky sand areas]. *Izvestiya Nizhne-volzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie* [Bull. of the Lower Volga Agro-University Complex: Science and Higher Professional Education], no. 4(48), pp. 105-113. (In Russian).
- 8 Nikiforova V.A., Vidishcheva E.A., Kovchun A.A., Vidishcheva D.D., 2017. *Ekologicheskie aspekty kachestva pit'evoy vody* [Ecological aspects of the quality of drinking water]. *Trudy Bratskogo gosudarstvennogo universiteta. Seriya: Estestvennye i inzhenernye nau-ki* [Transactions of Bratsk State University. Series: Natural and Engineering Sciences], vol. 2, pp. 166-169. (In Russian).
- 9 Ponomarenko R.V., 2013. Povyshenie urovnya ekologicheskoy bezopasnosti pit'evogo vodosnabzheniya regiona v usloviyakh zagryazneniya poverkhnostnogo istochnika [Increasing the level of environmental safety of drinking water supply in a region of surface source pollution]. Ekologicheskaya bezopasnost' [Ecological Safety], vol. 2013, no. 1(15). pp. 24-27. (In Russian).
- 10 Stepanov N.A., Zavodova E.I., 2015. *Kharakteristika vliyaniya kachestvennogo sostava pit'evoy vody na zdorov'e cheloveka* [Characteristics of drinking water quality influence on human health]. *Gigiena truda i meditsinskaya ekologiya* [Hygiene and Medical Ecology], no. 3, pp. 200-205. (In Russian).
- 11 GN 2.1.5.1315-03. Predel'no dopustimye kontsentratsii (PDK) khimicheskikh veshchestv v vode vodnykh ob"ektov khozyaystvenno-pit'evogo i kul'turno-bytovogo vodopol'zovaniya [Maximum Permissible Concentrations (MPC) of Chemicals in the Water of Water Bodies of Household, Drinking, and Cultural-Household Water Use]. 2003, 74 p. (In Russian).
- 12 Shurygin K.A., Makhov K.V., Rudenko E.A., Talyanin R.I., 2018. *Raschet pre-del'no dopustimoy kontsentratsii vrednykh veshchestv v sbrasyvaymykh stochnykh vodakh* [Calculation of the maximum permissible concentration of harmful substances in discharged wastewater]. Colloquium-Journal, no. 10-2(21), pp. 106-107. (In Russian).
- 13 Sazonov V.E. [et al.], 2018. *Doklad "O sostoyanii okruzhayushchey sredy Volgogradskoy oblasti v 2017 godu"* [Report "On the State of Environment in Volgograd Region in 2017"]. Committee of Natures Resources, Forestry and Ecology of Volgograd Region. Volgograd, Tempora Publ., 300 p. (In Russian).
- 14 Sazonov V.E. [et al.], 2019. *Doklad "O sostoyanii okruzhayushchey sredy Volgogradskoy oblasti v 2018 godu"* [Report "On the State of Environment in Volgograd Region in 2018"]. Committee of Natures Resources, Forestry and Ecology of Volgograd Region. Volgograd, Tempora Publ., 300 p. (In Russian).
- 15 Kurkina L.V., Rudakova S.I., 2015. Vliyanie pestitsidov na okruzhayushchuyu sredu i zdorov'e naseleniya Kemerovskoy oblasti [The Pesticides Impact on the Environment and Human Health of Kemerovo region]. Vestnik Rossiyskoy akademii estestvennykh nauk. Zapadno-Sibirskoe otdelenie [Bull. of the Russian Academy of Natural Sciences. West Siberian branch], no. 17, pp. 153-158. (In Russian).
- 16 Sokolov O.A., Chernikov V.A., 1999. *Ekologicheskaya bezopasnost' i ustoychivoe razvitie* [Ecological safety and sustainable development]. *Atlas raspredeleniya tyazhelykh metallov v ob"ektakh okruzhayushchey sredy* [Atlas of Distribution of Heavy Metals in Environmental Objects]. Pushchino, ONTI PNC RAS, b. 1, 164 p. (In Russian).
- 17 Tafeeva E.A., Petrov I.V., 2016. *Ekologo-gigienicheskaya otsenka vliyaniya za-gryazneniya pochvy na zdorov'e naseleniya* [Ecological and hygienic assessment of soil pollution effect on public health]. *Sovremennye problemy nauki i obrazovaniya* [Modern Problems of Science and Education], no. 4, p. 75. (In Russian).
- 18 Alimov A.F., Golubkov M.S., 2014. *Evtrofirovanie vodoemov i struktura soobsh-chestva gidrobiontov* [Water bodies eutrophication and the structure of hydrobionts community]. *Biologiya vnutrennikh vod* [Inland Water Biology], no. 3, pp. 5-11. (In Russian).

19 Khrisanov N.I., Osipov G.K., 1993. *Upravlenie evtrofirovaniem vodoemov* [Management of Water Bodies Eutrophication]. St. Petersburg, Gidrometeoizdat Publ., 274 p. (In Russian).

20 Reshenie Arbitrazhnogo suda Saratovskoy oblasti po zayavleniyu Saratovskoy mezhrayonnoy prirodookhrannoy prokuratury o privlechenii MUP "Engels-Vodokanal" k administrativnoy otvetstvennosti po ch. 2 st. 14.1 KoAP RF [Decision of the Arbitration Court of Saratov Region on the application of the Saratov Interdistrict Environmental Prosecutor's Office on bringing Municipal Unitary Enterprise Engels-Vodokanal to administrative responsibility under pt. 2 of Art. 14.1 Administrative Code of the Russian Federation (Case No. A57-20708 / 2018 February 18, 2019)], available: https://sudact.ru/arbitral/doc/tqgczeaWveR [accessed 2020]. (In Russian).

Власенко Марина Владимировна

Ученая степень: кандидат сельскохозяйственных наук

Должность: ведущий научный сотрудник

Место работы: федеральное государственное бюджетное научное учреждение «Федеральный научный центр агроэкологии, комплексных мелиораций и защитного лесоразведения Российской академии наук»

Адрес организации: Университетский пр-т, 97, г. Волгоград, Российская Федерация, 400062

E-mail: vlasencomarina@mail.ru

Vlasenko Marina Vladimirovna

Degree: Candidate of Agricultural Sciences

Position: Leading Researcher

Affiliation: Federal Scientific Center for Agroecology, Complex Reclamation and Protective

Afforestation of the Russian Academy of Sciences

Affiliation address: University ave., 97, Volgograd, Russian Federation, 400062

E-mail: vlasencomarina@mail.ru